Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil.
نویسندگان
چکیده
This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent "Impranil" and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste.
منابع مشابه
Assessment of Bioaugmentation and Biostimulation Efficiencies for Petroleum Contaminated Sediments
The effectiveness of hydrocarbon bioremediation strategies approaches is depending on various issues such as type and volume of pollution, nutrient accessibility in the target ecosystem, time, biodiversity of microorganisms, pollutant bioavailability and many others. In the present research, laboratory studies were carried out on the bioremediation of coastal sediment samples ...
متن کاملBioremediation of Soil Contaminated by Diesel Oil
Were evaluated natural attenuation, biostimulation and bioaugmentation on the degradation of total petroleum hydrocarbons (TPH) in soils contaminated with diesel oil. Bioaugmentation showed the greatest degradation in the light (C12 C23) fractions (72.7%) and heavy (C23 C40) fractions of TPH (75.2%) and natural attenuation was more effective than biostimulation. The greatest dehydrogenase activ...
متن کاملEffect of remediation strategy on crude oil biodegradation kinetics and half life times in shoreline sediment samples
Bioremediation, the process by which microorganisms degrade organic compounds to non-toxic or less toxic substances, has been widely used for cleanup of coastal ecosystems after oil spills. In this study, the hydrocarbon degradation rate and half lives in three bioremediation strategies (natural attenuation, biostimulation, and bioaugmentation) were compared in weathered crude oil (WCO) contami...
متن کاملComparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminate...
متن کاملIntuitionistic fuzzy EDAS method: an application to solid waste disposal site selection
Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and phytoremediation using rye and blue fenugreek to study the effect of thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 76 3 شماره
صفحات -
تاریخ انتشار 2010